2) 防火研究グループ 2)-1 熱応力・強制変形を受ける区画部材の耐火性能推定技術の開発 【基盤】

Research and development of a method for evaluating fire resistance of fire barriers under thermal stress and/or forced deformation by structural elements in a fire

Dept. of fire Engineering	Jun-ichi Suzuki	Ichiro Hagiwara	Hideaki Masuda	Takesh	i Motegi
防火研究グループ	鈴木淳一	萩原一郎	増田秀昭	茂木	武
			(研究期間	平成 22~24 年度)

The objective of this study is to clarify the influence of the interaction between structural frames and non-structural elements on fire resistance of buildings. Fire resistance of steel buildings depends on the structural stability of steel frames and performance of partition walls to mitigate fire spread. Partition walls would be damaged by the deformation of a steel frame because of the response of partition walls following the steel frame when the frame is exposed to fire. As a result of the experiment, the followings became obvious. Partition walls with common light gauge steel tended to buckle under thermal stress and forced deformation in fire testing. The partition walls with lower axial stiffness and strength had a possibility to increase deformation capacity. The

performance related temperature history can be estimated by numerical analysis in this study.

[研究目的および経過]

火災時に鋼構造架構が大きく変形して間仕切り壁等 の区画部材の性能を低下させると、架構が広範囲に亘っ て火熱に曝されるために、架構の崩壊メカニズムが変化 し、架構の崩壊温度が低下する恐れがある(図 1)。特に、 架構の温度上昇によって、柱の局部座屈や梁・床の大た わみ等が生じると間仕切り壁等の区画部材に亀裂や脱落 が生じ、遮熱性や遮炎性を損なって、延焼拡大する恐れ がある。梁・床のたわみや応力再配分時における変形等 に関しては、区画部材等の耐火性能と変形との関係を評 価するための技術基準は整備されておらず、それを裏付 けるための実験等の蓄積もほとんど無い。

本研究では、区建築物全体の構造特性を考慮した合 理的な耐火性能評価手法の実現に向けて、画部材の耐火 性能の実態、耐火性能検証法が規定する変形制限の合理 性等を把握し、火災加熱を受ける架構の熱変形量および それを踏まえた区画部材の耐火性能を把握したので報告 する。

[研究内容]

区画部材と周辺の構造体との相互作用、火災外力の 大きさが区画部材の耐火性能に与える影響を明らかとす るため、区画模型、耐火炉を用いた軽量鉄骨下地の強化 せっこうボード乾式間仕切り壁に対して熱膨張を拘束し た条件や強制変形を負荷した条件等で加熱実験を行い、 間仕切り壁に導入される熱応力、終局状態を把握する (図 2)。なお、試験体に与える熱変形量等の実験変数は、 数値計算による予備解析を行って設定する(図 3、4)。ま た、表1に試験体概要と実験条件を示す、試験体につい ても載荷加熱実験を実施し、その耐火性能を明らかにす る。また、熱的性質等を用いて数値解析による加熱実験 の再現を行うとともに、火災時における架構の変形を架

記号	試験体 寸法	強化 せっこうボード		軽量鉄骨 下地材	加熱条件	実験条件	
	W×H(m)	厚さ(mm)	張り方	スタッド	火災温度 上昇係数	載荷条件	載荷ペース
S1	1 2 3 3.1×3.1 4	12.5	両面1枚 縦張り	C- 65x45x10 t=0.6	690	変形拘束	-
S2		15			650	変形拘束	-
S 3		15			550	強制変形 (偏心載荷)	1 mm/min (2%/hour)
S 4		15				強制変形 (均等載荷)	0.5mm/min (1%/hour)
S 5	3.1×3.0	15				強制変形 (均等載荷)	0.5mm/min (1%/hour)
S6	3.1×3.0	12.5	両面2枚 縦張り	□- 65x45x10* t=0.6	460(ISO834)	スタッド温度 約300℃到達後 に載荷開始	0.5mm/min (1%/hour)
S 7	3.1×3.0	15	両面1枚 縦張り	C-65x45x10 t=0.6	460(ISO834)	鉛直変形非拘束 (自由伸び)	-

表1 実験条件および試験体一覧

構の構造性能、火災外力、区画部材の耐火性能等に応じ て評価するための推定技術を開発する。

[研究結果]

試験体は軽量鉄骨下地+両面強化せっこうボード縦 張り形式の乾式間仕切り壁とした。S1-S5、S7 試験体は 強化せっこうボード 1 枚張り、S6 は 2 枚張りとした。 試験体には、強化せっこうボード、スタッドの表面・裏 面温度測定用の熱電対、鉛直方向変形と面外変形計測用 の変位計を取り付けた(図 5)。試験体 S1、2 に対しては、 火災時に熱応力のみを受ける間仕切壁を想定して、鉛直 方向の壁の熱膨張を完全拘束した。試験体 S3-6 に対し ては、火災時に熱応力+強制変形を受ける壁を想定して、 載荷装置による強制鉛直変位を与えた。S7 では、非拘 束条件下の区画部材の状態を把握するため、鉛直方向は 自由とした。

図 6-7 に示すとおり、火災加熱を受ける乾式間仕切り 壁の座屈を伴う終局的な典型挙動を実験的に把握するこ とができた。図 6 に示すように非耐力壁の乾式間仕切り 壁であっても熱応力および強制変形によって圧縮力が導 入され、比較的早期に座屈が発生し、大きな変形が発生 することが明らかとなった。

非定常熱伝導解析等により区画部材の耐火性能を推定した。図 8、9 に示す、強化せっこうボードの物性変化(熱収縮率、密度、熱伝導率および比熱等)、中空層の空気と鉄の体積比等を考慮することで区画部材の温度推移を推定することが可能となった(図 10)。

[参考文献]

- 熱応力・強制変形を受ける乾式間仕切り壁の変形追従性: 鈴木弘之,鈴木淳一,山本弘樹,大宮喜文,日本建築学会学術 講演梗概 A-2 分冊, p. 245-246, 2012
- 2) 熱応力・強制変形を受ける乾式間仕切り壁の耐火性能 -その4 異なる火災外力における乾式間仕切り壁の挙動-:山本弘樹,鈴木淳一,藤井考平,鈴木弘之,大宮喜文,日本火災 学会研究発表概要集,p52-53,2012.5
- 3) 熱応力・強制変形を受ける乾式間仕切り壁の耐火性能 一載荷加熱試験による強制変形の再現一:山本弘樹,鈴木淳 一,藤井考平,鈴木弘之,大宮喜文,日本建築学会関東支部 2011年度 研究発表会研究報告集 I,(82),p.709-712, 2012.03
- 4) 熱応力・強制変形を受ける乾式間仕切り壁の耐火性能 その1、2,鈴木淳一他,日本建築学会学術講演梗概 A-2 分冊, p.189-190, 2011年

