I - 6 浮き上がりを許容する鉄筋コンクリート造1/3スケール6層連層耐力壁フレーム構造の地震応答

Study on earthquake response of one-third scale 6-story reinforced concrete structure allowing lift up behavior of a continuous shear wall

				(研究期間	平成 15~17年度)
構造研究グループ	福山 洋	加藤博人	楠	浩一	向井智久
Dept. of Structural Engineering	Hiroshi Fukuyama	Hiroto Kato	Kou	ich Kusunoki	Tomohisa Mukai
国際地震工学センター			斉藤大樹		
International Institute of Seismology and Earthquake Engineering			Taiki Saito		

In order to study what amount of lateral force and varied axial force are carried by walls in reinforced concrete buildings with multistory shear wall and how the rigidity at the bottom of the wall frame affect the amount of them, the pseudo-dynamic test with 2span-1-bay-6-story reinforced concrete structure with a multi-story shear wall was conducted with the parameter of the rigidity at the bottom of the wall frame. In this paper, the test results were discussed with the numerically calculated strengths in terms of lateral force carried by the wall frame, lateral force distribution mode, and the equivalent height of the specimen and the wall frame.

[研究目的及び経過]鉄筋コンクリート造(以下、RC 造)建物に一部連層耐力壁を有する構面が存在する場合、 その構面の剛性および耐力は一般的に耐力壁を有しない 構面(以降、剛節架構と呼ぶ)に較べて大きくなる。そ の為、水平力および転倒モーメントにより生じる変動軸 力の、各構面での負担割合は連層耐力壁構面と剛節架構 で大きく異なると考えられる。

本研究では、中央構面に連層耐力壁を有する 2×1 ス パン 6 層鉄筋コンクリート造試験体(縮尺 1/3)の、連 層耐力壁構面脚部の固定度をパラメータとした仮動的実 験を実施した。さらに、実験結果を用いて、連層耐 力壁構面脚部を固定した場合、および固定しない場 合について、地震時の連層耐力壁構面と剛節架構で

および等価高さを検討した。その結果を以下に報告 する。

の水平力の負担割合を明らかにし、転倒モーメント

[研究内容] 試験体形状、加力概要を図1に示す。 図1に示すように、1・3・5層の4本の柱の階高中 央部に分力計を挿入し、各柱に作用する加力方向お よび鉛直方向の力を計測した。鉛直方向については、 無付加状態で分力計を計測し、その値を初期値とし た。水平方向の変位計については、基礎回転・基礎 固定ともに単点加力後に計測を実施し、その値を初 期値とした。また、基礎固定時では、1回目のJMA Kobe75入力時に加力装置に不具合が発生し、一部 計測器を設置し直したため、2回目のJMA Kobe75 入力時に初期値を計測した。 [研究結果] 基礎回転および基礎固定時の、ベース シアー - 代表変位関係包絡線を図2および図3に示す。 図中には材料の実強度に基づく保有水平耐力計算値を併 せて示している。基礎回転時ではJMA Kobe 50、基礎固 定時ではTakatori入力時に計算耐力に達していることが 分かる。 図4および図5に基礎回転時および基礎固定 時の耐力壁および柱構面が負担した圧縮・引張変動軸力 を示す。基礎回転時には、耐力壁構面の負担引張変動軸 力は、ほぼ直交基礎ばりの計算耐力で頭打ちとなってい ることが分かる。また、基礎固定時には、耐力壁構面の

図1 試験体形状·加力概要

引張変動軸力はほぼ、計算された全主筋降伏時引張軸力 で一定となっていることが分かる。図6および図7に基 礎回転時および基礎固定時の耐力壁架構と剛節架構の負 担水平力を示す。図中には、震度分布を等分布とした場 合および逆三角形分布とした場合の1層層せん断耐力を 併せて示している。基礎回転時において剛節架構との負 担水平力を比較すると、負側では若干耐力壁の負担水平 力が剛節架構に較べて低いが、正側ではほぼ両者は一致 していることが分かる。基礎固定時においては、耐力壁 の負担水平力が剛節架構に比べて高い。また、耐力壁の 負担水平力がせん断破壊によって急激に低下するまでは、

図4 負担変動軸力(基礎回転時)

図 6 負担水平力(基礎回転時)

正側・負側ともに剛節架構の負担せん断力はほぼ一定と なっている。

[参考文献]

勅使川原、楠、加藤、斉藤:中央構面に連層耐力 壁を有する 1×2 スパン6層 RC 造試験体の仮動的実験 における試験体特性と加力方法、コンクリート工学年次 論文報告集、2004

岡野、勅使川原、向井、楠:中央構面に連層耐力 壁を有する1×2スパン6層RC造試験体の仮動的実験 による損傷過程、コンクリート工学年次論文報告集、 2004

