

WORKSHOP ON

Collaborative Research and Development Project for Disaster Mitigation in Earthquake Prone Areas in Asia

STUDY ON SEISMIC PERFORMANCE AND STRUCTURAL INSPECTION OF RETAINING WALL

Presented by:

Kosh Nath Adhikari

27 September, 2007

Table of Contents

- Objectives
- Present condition of retaining walls in Nepal
- Shaking table test and FEM calculation and comparison of results
- Structural inspection of retaining wall
- Field investigation of retaining walls damaged by Noto Hanto Earthquake and Niigata Cheutsu-Oki Earthquake 2007
- Recommendation of inspection manual
- Conclusion

Objectives

 Comparison of seismic performance of concrete block type retaining wall by shaking table test and Finite Element Method.

- To disseminate and generate awareness for earthquake disaster mitigation about the existing retaining walls to residents to encourage for regular environmental inspection
- To analyze the preliminary inspection sample survey data of retaining walls by using guideline of Japan

Preparing an inspection manual for different types of retaining walls

Stone masonry Retaining wall with clogged weep holes due to weeds

No provision of proper catch drain in the upstream side of Retaining wall and water flowing over the wall

Stone masonry Retaining wall constructed outer face vertically to protect building from damage

3 Shaking table test for Retaining walls

•The length, breadth and height of the specimen were 6m, 3m and 2.5m respectively was set inside a steel tank.

•The size of each concrete block was 400mm x 250mm x 350mm

818gal.mpg

<u>1000gal.mpg</u>

• Two specimens tests on retaining wall without concrete backing and with concrete backing.

•The inclination of retaining wall was 77 degree with horizontal.

Applied Accelerations Kobe Earthquake 1995 NS component:

100gal, 200gal, 400gal, 818gal and 1000gal

Concrete block retaining wall with concrete backing case

Slope of the wall 77°

Applied Acceleration Kobe 1995 NS component (1.2*818)

Earth quake as per Kashiwazaki K-net 667 gal

4. Calculation by Finite Element Method

•Elasto-Plastic two dimensional FEM dynamic analysis was performed in order to compare the shaking table test results for retaining wall with concrete backing

Material properties and support conditions

S.No	Young's modulus, Es(KPa)	Poisson's ratio n	Cohesion c (KPa)	Frictional angle Ø(Degree)	Dilatancy angle y	Unit wt.(KN/ m3)	Ko
1	3100	0.35	1	35	5	16	0
2	2.0E+5	0.15	1.0E+20	0	0	20	0
3	10000	0.3	1	45	15	19	0
4	3100	0.35	1	35	5	16	0
5	4300	0.35	1	35	5	16	0
6	5300	0.35	1	35	5	16	0
7	6100	0.35	1	35	5	16	0
8	6900	0.35	1	35	5	16	0
9	2.5E+7	0.15	1.0E+20	0	0	20	0

Young's modulus (in MN/m²) of soil is calculated by: Es=1.4N

N-is calculated value from Swedish Weight Sounding test

(Recommendation for the Design of Building Foundations 2001(Japan)

Y=Ø - 30°

(Introduction to soil strength & ground failure published by Japan Geotechnical Society, 1995)

Recorded Kobe NS Component

Displaced shape of specimen

Strain in specimen

Comparison of acceleration at different nodes with applied Kobe NS component (818 gal)

Wave forms are consistent

Displacements

Comparison of Test Result and Calculated Result for 400 gal acceleration

Comparison of Results for Displacement

in 400 gal acceleration

6. Structural inspection for retaining walls

- -To avoid secondary disasters right after an earthquake.
- -Data of 229 retaining walls
- Evaluation is performed based on guidelines of Yokohama city
- Evaluation is based on score system

Score <5,Almost safe:

>5 to less than or equal to 9, Relatively unsafe and > than 9 are High risk

Akabane area

Ueno area

Map source: From Digital 25000 (Map image by Geographical Survey Institute, Japan)

Evaluation criteria for retaining wall inspection

1	1 in 3m ²	Small weep hole	No weep hole
Weep holes			
2	<75°	75°~80°	>80°
Front slope of retainin g wall			
3	No cracks	Width of 1~20(5)mm	Width >20(5)mm
Horizonta I cracks			

Results

Findings:

• 32% of walls are found to be almost safe, 60% of walls are found to be relatively unstable and 8% of walls need to take due care.

- All the retaining walls have front slope more than 60°
- 11% of retaining walls have only proper weep holes

Field investigation of retaining walls damaged by:

Noto Hanto Earthquake 2007

•Magnitude 6.9, 9:42 AM, On 25th March, 2007

•One person was killed, 170 people were injured

•Toge area has a steep slope more than 20° and retaining walls are found to be constructed for the construction of approach roads and houses to maintain the slope stability

• Lateral movement of retaining walls due to increased active earth pressure.

Lateral movement of retaining wall

Vertical crack near the corner for vertically extended wall

Niigata Chuetsu - Oki Earthquake 2007

•A couple of earthquakes 6⁺ on Japanese scale (JMA) in the interval of 14 hours in Niigata prefecture on 16th July,2007.

- •Death toll 11 persons Completely collapsed wooden houses 1024
- •Injured more than 1890 Nearly 12,500 people are in evacuation center

Most of the casualties were from the collapsed of old wooden houses due to failure of earth retaining structures in Kashiwazaki city at Banzin area

Causes of failure of retaining walls

- Failure of foundation
- Slip or sliding of ground
- Inadequate thickness of wall with respect to height
- Overturning of walls
- Insufficient front slope

Overturning of retaining wall

Tilted pre-cast concrete block retaining wall

Failure due to insufficient thickness of hollow block wall

Sliding of retaining wall and crumbling of road side drain

Checking of ground water table from the existing wells

Corner splitting and tilted block compound wall

Sliding of RC retaining wall

Karihamura area

Failure of newly constructed house at the foot hill due to slip, upheaval of ground and liquefaction

Less or no clearance between slope toe and house

Cracking at corner of wall

Settlement of ground due to combined effects of sliding and liquefaction

Recommendation of manual for inspection of retaining walls

Checking algorithm

- 1) Checking the surrounding environmental conditions
 - a) Weep holes
 - b) Exuded water
 - c) Drainage facilities

The largest one is used out of scores in a) to c)

2) Checking retaining wall based on followings:

a) Cracks

- b) Horizontal displacement
- c) Differential settlement
- d) Clearance at external corner

e) Bulge

f) Inclination/ Breakage

The largest one is used out of scores in a) to f)

3) Finally, evaluating the retaining wall based on the higher scores obtained in 1) and 2) items

•If the sum of the higher score of 1) and 2) is less than 5 points, the safety class of the retaining wall is Almost safe

•If the sum of the higher scores of 1) and 2) is equal or greater than 5 to less than 9 points safety class of the retaining wall is Relatively unsafe

•If the sum of the higher scores of 1) and 2) is more than 9 points safety class of the retaining wall is Relatively unsafe

1) Surrounding environmental condition

Weep hole (Excluding dry stone and Gabion walls)

Condition of retaining wall	Score
Drainage of upstream and proper numbers of weep holes exists (1 weep hole of 100Ø at 2.25 m ² surface area of wall)	0.0
Weep holes are clogged or small weep hole exists	1.0
No weep holes	2.0

Water exudation

The surface of retaining wall is dry	0.0
The surface of wall is always wet	0.5
Water flows over the surface	1.0

Drainage facility

The drainage facility is good	0.0
Side drain and upstream drain is crumbled, sedimentation, depressions are formed on the upstream side	0.5
Water flows out from the cracks or joints of retaining wall	1.0

The largest score out of above 3 cases is used for evaluation

2) Cracks

Horizontal crack for R.R. stone masonry/Brick masonry/ Concrete block

No cracks	0.0
Horizontal crack along the joint of masonry in the vicinity of center	3.5
Horizontal crack at the joint of masonry and material of wall itself	5.0
Horizontal large open crack	6.5

Inclination/ Breakage

No inclination	0.0
Slightly inclined forward or backward	5.0
Apparently inclined forward or backward	6.5
Breakage due to inclination	9.0

Surrounding environmental condition inspection

Weep holes, Exuded water and Drainage conditions

Reference drawings for manual

Surrounding environmental conditions

Flowing water over the retaining wall

Lack of proper routine maintenance

Different possible cases of cracks for R.R stone masonry

Possible cracks in gravity concrete retaining walls

Conclusion

- The wave form of acceleration from the both shaking table test and finite element method for retaining wall are consistent at measured different nodes.
- The displacements obtained by the application of acceleration of 400gal are nearly consistent for both FEM and Shaking table test.
 - •The displacement obtained by the application of 400 gal acceleration and 818 gal were not found any change due to the slip of the surfaces at the crack point.
 - Developed manual for the inspection of retaining wall will help to raise awareness among the concerns and will be a meaningful tool to evaluate the level of risk and to prevent the loss of life and properties from the secondary disaster right after a big quake.
 - •Field study right after an occurrence of earthquakes helped me to understand the key points to be taken in consideration while designing of earth retaining structures.

